Dynamical membrane curvature instability controlled by intermonolayer friction.
نویسندگان
چکیده
We study a dynamical curvature instability caused by a local chemical modification of a phospholipid membrane. In our experiments, a basic solution is microinjected close to a giant unilamellar vesicle, which induces a local chemical modification of some lipids in the external monolayer of the membrane. This modification causes a local deformation of the vesicle, which then relaxes. We present a theoretical description of this instability, taking into account both the change of the equilibrium lipid density and the change of the spontaneous membrane curvature induced by the chemical modification. We show that these two types of changes of the membrane properties yield different dynamics. In contrast, it is impossible to distinguish them when studying the equilibrium shape of a vesicle subjected to a global modification. In our model, the longest relaxation timescale is related to the intermonolayer friction, which plays an important part when there is a change in the equilibrium density in one monolayer. We compare our experimental results to the predictions of our model by fitting the measured time evolution of the deformation height to the solution of our dynamical equations. We obtain good agreement between theory and experiments. Our fits enable us to estimate the intermonolayer friction coefficient, yielding values that are consistent with previous measurements.
منابع مشابه
Chemically triggered ejection of membrane tubules controlled by intermonolayer friction.
We report a chemically driven membrane shape instability that triggers the ejection of a tubule growing exponentially toward a chemical source. The instability is initiated by a dilation of the exposed monolayer, which is coupled to the membrane spontaneous curvature and slowed down by intermonolayer friction. Our experiments are performed by local delivery of a basic pH solution to a giant ves...
متن کاملDynamics of the force exchanged between membrane inclusions.
We study the dynamical response of a fluid membrane to the sudden conformation change of active inclusions linearly coupled to the membrane curvature. The mutual force between two inclusions triggered simultaneously is shown to exhibit a transient maximum much larger than the equilibrium force. Even in the presence of tension, this dynamical interaction is long range over distances much larger ...
متن کاملThermal undulations of lipid bilayers relax by intermonolayer friction at submicrometer length scales.
The time correlation functions of the thermal undulations of a lipid membrane have been studied by molecular dynamics simulations of a coarse-grained bilayer model. We observe a double-exponential decay, with relaxation rates in good agreement with the theory by Seifert and Langer, [Europhys. Lett. 23, 71 (1993)]. Intermonolayer friction resulting from local velocity differences between the two...
متن کاملThe effect of shear flow on the Helfrich interaction in lyotropic lamellar systems.
We study the effect of shear flow on the entropic Helfrich interaction in lyotropic surfactant smectic fluids. Arguing that flow induces an effective anisotropic surface tension in bilayers due to a combination of intermonolayer friction, bilayer collisions and convection, we calculate the reduction in fluctuations and hence the renormalised change in effective compression modulus and steady-st...
متن کاملMembrane properties revealed by spatiotemporal response to a local inhomogeneity.
We study theoretically the spatiotemporal response of a lipid membrane submitted to a local chemical change of its environment, taking into account the time-dependent profile of the reagent concentration due to diffusion in the solution above the membrane. We show that the effect of the evolution of the reagent concentration profile becomes negligible after some time. It then becomes possible t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 23 28 شماره
صفحات -
تاریخ انتشار 2011